Page 168 - Kỷ yếu hội thảo quốc tế: Ứng dụng công nghệ mới trong công trình xanh - lần thứ 9 (ATiGB 2024)
P. 168

th
               HỘI THẢO QUỐC TẾ ATiGB LẦN THỨ CHÍN - The 9  ATiGB 2024                                 159

               fade,  with  the  discharging  capacity  decreasing  from   Zn-based batteries  via  deeply understanding their mechanism
               112.5 mAh/g to 72.08 mAh/g, approximately 35% of   and using electrolyte additive”,  Adv.  Funct.  Master,  Vol. 29,
               the initial cycle. The coulombic efficiency was 99.4   pp. 1903605, 2019.
               %.  This  capacity  decline  could  be  due  to  unwanted   [10].  B.E.  Conway,  V.  Birss,  J.  Wojtowicz,  “The  role  and
               side reactions affecting the zinc plate surface, uneven   utilization  of  pseudocapacitance  for  energy  storage  by
                                                                 supercapacitors”, J. Power Sources, voil. 66, pp. 1-14, 1997.
               deposition of Zn and Li ions, leading to non-uniform   [11].T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, J.
               electrode surface contact, which increases the internal   Lim,  B.  Dunn,  B.  E.  Conway,  V.  Birss,  J.  Wojtowicz,  H.
               resistance   of   the   battery   and   affects   the   Lindstrom, ¨S. Sodergren, ¨ A. Solbrand, H. Rensmo, J. Hjelm,
               electrochemical  reactions,  resulting  in  capacity   A. Hagfeldt, S.-E. Lindquist, S. Britto, M. Leskes, X. Hua, C.-
               degradation.                                      A.  H´  ebert,  H.S.  Shin,  S.  Clarke,  O.  Borkiewicz,  K.W.
                                                                 Chapman,  R.  Seshadri,  J.  Cho,  C.P.  Grey,  “Pseudocapacitive
                  4. CONSLUSIONS                                 contributions  to  electrochemical  energy  storage  in  TiO2
                                                                 (anatase)  Nanoparticles”,  J.  Am.  Chem.  Soc,  Vol.  101,  pp.
                  In summary, a study was conducted on an aqueous   1802-1809, 1997.
               hybrid zinc battery system using an LFP cathode in a
               pouch    cell   configuration.   Electrochemical
               characterization  revealed  that  the  LFP  material
               exhibited  a  redox  pair,  with  a  reduction  peak
               (corresponding to the discharge process) at 1.12V and
               an  oxidation  peak  (corresponding  to  the  charge
               process) at 1.35V. The capacity of the Zn/LFP pouch
               cell using a 3M LiCl + 4M ZnCl 2 electrolyte after 80
               cycles was 72 mAh/g at a current rate of  0.5C. The
               battery efficiency after 80 cycles reached 99.4%.
                  ACKNOWLEDGMENT
                  VINIF  partly  supports  this  work.  Bien  Nguyen
               was  funded  by  the  Master,  PhD  Scholarship
               Programme  of  VinGroup  Innovation  Foundation
               (VINIF), code VINIF. 2023.ThS.015.
                              REFERENCES
               [1]. S. W. D. Gourley, R. Brown, B. D. Adams, and D. Higgins,
                  “Zinc-ion batteries for stationary energy storage,” Joule,  Vol.
                  7, No. 7, pp. 1415–1436, Jul. 2023.
               [2]. Q. Wen et al., “Recent advances in interfacial modification of
                  zinc  anode  for  aqueous  rechargeable  zinc  ion  batteries,”
                  Journal  of  Energy  Chemistry,  Vol.  83,  pp.  287–303,  Aug.
                  2023.
               [3]. C.  Nie  et  al.,  “Recent  Progress  on  Zn  Anodes  for  Advanced
                  Aqueous Zinc-Ion Batteries,” Advanced Energy Materials, vol.
                  13, No. 28, pp. 2300606, 2023.
               [4]. X.  Zhang  et  al.,  “Comprehensive  review  on  zinc-ion  battery
                  anode: Challenges and strategies,” InfoMat, Vol. 4, No. 7, pp.
                  e12306, 2022.
               [5]. W.  Liu,  M.-S.  Song,  B.  Kong,  Y.  Cui,,  “Flexible  and
                  stretchable  energy  storage:  recent  advances  and  future
                  perspectives”, Adv. Master, Vol. 29, pp. 1603436, November
                  2016.
               [6]. P.  Simon,  Y.  Gogotsi,  “Perspectives  for  electrochemical
                  capacitors and related devices”, Natt.Mater, Vol. 19, pp. 1151-
                  1163, 2020.
               [7]. D.G.  Mackanic,  T.-H.  Chang,  Z.  Huang,  Y.  Cui,  Z.  Bao,
                  “Stretchable  electrochemical”,  Chem.  Soc.  Rev,  Vol.  49,  pp
                  4466-4495, 2020.
               [8]. C.  Yuan,  X.  Zhong,  P.  Tian,  Z.  Wang,  G.  Gao,  L.  Duan,  C.
                  Wang,  F.  Shi,  “Antifreezing  zwitterionic-based  hydrogel
                  electrolyte for aqueous Zn ion batteries”, ACS Appl, Vol. 5,0
                  pp 7530-7537, 2022.
               [9]. J. Hao, J. Long, B. Li, X. Li, S. Zhang, F. Yang, X. Zeng, Z.
                  Yang, W.K. Pang, Z. Guo, “Toward high-performance hybrid
                                                                                   ISBN: 978-604-80-9779-0
   163   164   165   166   167   168   169   170   171   172   173